Lipschitz Continuous Ordinary Differential Equations are Polynomial-Space Complete

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit Runge-Kutta Methods for Lipschitz Continuous Ordinary Differential Equations

Implicit Runge-Kutta(IRK) methods for solving the nonsmooth ordinary differential equation (ODE) involve a system of nonsmooth equations. We show superlinear convergence of the slanting Newton method for solving the system of nonsmooth equations. We prove the slanting differentiability and give a slanting function for the involved function. We develop a new code based on the slanting Newton met...

متن کامل

Computing with Polynomial Ordinary Differential Equations

In 1941, Claude Shannon introduced the General Purpose Analog Computer (GPAC) as a mathematical model of DiUerential Analysers, that is to say as a model of continuoustime analog (mechanical, and later on electronic) machines of that time. Following Shannon’s arguments, functions generated by the GPAC must satisfy a polynomial diUerential algebraic equation (DAE). As it is known that some compu...

متن کامل

Newton Polygons of Polynomial Ordinary Differential Equations

In this paper we show some properties of the Newton polygon of a polynomial ordinary differential equation. We give the relation between the Newton polygons of a differential polynomial and its partial derivatives. Newton polygons of evaluations of differential polynomials are also described.

متن کامل

Puiseux Series Solutions of Ordinary Polynomial Differential Equations : Complexity Study

We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given in 1990 by Grigoriev for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The alg...

متن کامل

Polynomial Chaos Expansions for Random Ordinary Differential Equations

We consider numerical methods for finding approximate solutions to Ordinary Differential Equations (ODEs) with parameters distributed with some probability by the Generalized Polynomial Chaos (GPC) approach. In particular, we consider those with forcing functions that have a random parameter in both the scalar and vector case. We then consider linear systems of ODEs with deterministic forcing a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: computational complexity

سال: 2010

ISSN: 1016-3328,1420-8954

DOI: 10.1007/s00037-010-0286-0